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A Fast Recursive Total Least Squares Algorithm for
Adaptive IIR Filtering

Dong-Xia Chang, Da-Zheng Feng, Member, IEEE, Wei-Xing Zheng, Senior Member, IEEE, and Lei Li

Abstract—This paper develops a new fast recursive total least
squares (N-RTLS) algorithm to recursively compute the total least
squares (TLS) solution for adaptive infinite-impulse-response (IIR)
filtering. The new algorithm is based on the minimization of the
constraint Rayleigh quotient in which the first entry of the pa-
rameter vector is fixed to the negative one. The highly computa-
tional efficiency of the proposed algorithm depends on the efficient
computation of the gain vector and the adaptation of the Reyleigh
quotient. Using the shift structure of the input data vectors, a fast
algorithm for computing the gain vector is established, which is
referred to as the fast gain vector (FGV) algorithm. The computa-
tional load of the FGV algorithm is smaller than that of the fast
Kalman algorithm. Moreover, the new algorithm is numerically
stable since it does not use the well-known matrix inversion lemma.
The computational complexity of the new algorithm per iteration is
also O(L). The global convergence of the new algorithm is studied.
The performances of the relevant algorithms are compared via
simulations.

Index Terms—Adaptive filtering, fast gain vector, IIR filtering,
Rayleigh quotient.

I. INTRODUCTION

DAPTIVE infinite-impulse-response (IIR) filters are con-
sidered as the efficient replacements for adaptive finite-im-
pulse-response (FIR) filters when the desired filter can be more
economically modeled with poles and zeros only than with the
all-zero form of an FIR tapped-delay line. The possible benefits
in reduced complexity and improved performance have enlarged
the usability of the adaptive IIR filter. Correspondingly, adaptive
IIR filters have been the subject of active research over the last
three decades [1]-[3]. Examples of applications of the IIR filters
methods include adaptive noise cancellation [4], spectral estima-
tion [5], time delay estimation, and adaptive deconvolution [6].
Considerable research has been conducted to derive adaptive
IIR filters in several different ways. One type of algorithms is
obtained by means of the output-error method [7]-[9]. In the
output error techniques, the adaptive filter operates in a recur-
sive manner on the input signal to provide an estimate of the de-
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sired response signal. However, this type of algorithm requires
a certain system transfer function to be strictly positive real in
order to avoid the problems with instability and to ensure the
convergence of the algorithm [10], [11]. Because the error sur-
face of the output error is a nonlinear function of coefficients, the
error function usually contains multiple local minimum points,
which may not assure that filter parameters vector converges to
the global minimum point associated with an unbiased solution
for adaptive IIR filtering. Since the output error methods are
highly nonlinear, it is difficult for them to produce the unbiased
solution. The other class of algorithms is obtained by means of
the equation-error technique. Since the system model employed
is linear, the equation-error methods for adaptive IIR filtering
can operate in a stable manner when the step size is properly
selected. Moreover, they have such attractive features as a uni-
modal error surface, good convergence, and guaranteed stability
compared with the output-error approach [2]. However, unfor-
tunately, the equation-error adaptive algorithms usually give bi-
ased solutions for adaptive IIR filtering since the feedback of the
noisy output results in the estimation error of the correlation ma-
trix. In order to overcome the bias problem, some efficient algo-
rithms have been developed, such as unit-norm constraint [12],
[13], monic normalization [14], [15], and total least squares
(TLS) approaches [16]. Among them, the total least squares
(TLS) approaches have proved to be the appealing alternative
for achieving the unbiased solution in adaptive IIR filtering.
This paper investigates the TLS solution of the equation-error
adaptive IIR filters when only the output vector contains addi-
tive noise. Although the TLS problems were carefully proposed
in 1901 [17], they were not extensively explored for a long time.
Since their basic performances were studied by Golub and Van
Loan in 1980 [18], the solution of the TLS problems has been
widely applied in a broad class of scientific disciplines such
as economics, system theory, signal processing, and automatic
control [4], [19]-[24]. Nevertheless, the study of the TLS so-
lutions is still insufficient, and their applications in signal pro-
cessing are limited, perhaps due to a lack of efficient algorithms
to solve the related eigenvalue problem. In general, the solution
of a TLS problem can be obtained by the singular value decom-
position (SVD) of a matrix [18], [25]. Since the multiplication
operations of SVD for an L by L matrix are of computational
complexity O(L3), the application of the TLS methods is re-
stricted in practice, especially in real-time signal processing.
For adaptively computing the generalized eigenvector associ-
ated with the smallest eigenvalue of the autocorrelation matrix, a
number of algorithms have been proposed in the context of Pis-
arenko spectral estimation [26]. These algorithms fall into two
broad categories. The first category involves the stochastic-type
adaptive algorithms [26]-[31]. However, these algorithms have
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no equilibrium point under the persistent excitation condition
and with the constant learning rate, as shown in [32]. In con-
trast, the total least mean squares (TLMS) algorithm developed
in [33] has an equilibrium point under the persistent excitation
condition [34]. The existing random algorithms have a simple
structure and require O(L) multiplication per iteration but have
relatively slow convergence speed compared with the following
second class of algorithms. Usually, we refer to all the first-
category algorithms as the TLMS algorithms.

A large variety of the second-category algorithms are called
the recursive total least squares (RTLS) algorithms that usually
have O(L?) computational complexity per iteration. Other algo-
rithms (such as the inverse-power method [27], the conjugate-
gradient method [35], and the least squares-like method [36])
also require O(L?) multiplication operations per eigenvector
update. In particular, for online solution of the TLS problems
in adaptive filtering, Davila [16], [37] proposed a fast RTLS al-
gorithm based on gradient search for the generalized Rayleigh
quotient along the Kalman gain vector [38]. This algorithm can
fast track the eigenvector associated with the smallest eigen-
value of the augmented autocorrelation matrix since the Kalman
gain vector can be fast estimated by taking advantage of the shift
structure of the input data vector. Davila’s RTLS algorithm has
computational complexity of O(L) per iteration but is depen-
dent on the fast computation of the Kalman gain vector. It should
be pointed out that the computation of the Kalman gain vector
may be potentially unstable [39], although there have been some
efficient solution approaches [40], [41] for overcoming the in-
stability of the Kalman gain vector.

This paper proposes to search the minimum point of the con-
straint Rayleigh quotient along the input data vector. We define
a gain vector that can also be computed fast. The computational
complexity of the new algorithm is lower than that of Davila’s.
Moreover, the proposed algorithm is independent of the recur-
sive computation of the inversion of the autocorrelation matrix
and possesses numerical stability as well.

The paper is organized as follows. In Section II, we consider
the TLS problems in adaptive IIR filtering and describe the new
algorithm (N-RTLS) for efficient computation of the TLS so-
lution. Section III discusses the global convergence and unbi-
ased property of the new algorithm. In Section IV, we present
computer simulations to demonstrate the performances of the
N-RTLS algorithm. Section V gives some conclusions.

The notations in this paper are as follows: A capital boldfaced
letter is used to denote a matrix. A small boldfaced letter is used
to denote a column vector, unless specified otherwise. An in-
teger ¢ is a discrete-time variable. F'{x} denotes the expecta-
tion operator. 0 is a null vector or matrix, I denotes an iden-
tity matrix, and ez, ,, € REX1 represents a coordinate vector
in which only the nth element is nonzero and equal to 1. If
a vector u = [ug,ug,..., ug)? € REX then [uy (1)) =

’ ’

[u17u2, .. .uL,l]T S RIE-1Dx1,

II. TLS PROBLEMS IN ADAPTIVE IIR FILTERING AND NEW
RTLS ALGORITHM

A. Signal Model

Consider an unknown system with infinite impulse response
and assume that only the output is corrupted by the additive
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Fig. 1. Unknown adaptive IIR system with output noise 7(%).

white Gaussian noise. We use an equation-error adaptive IIR
filter to estimate the IIR system from the observations of the
input and output, as shown in Fig. 1. The IIR vector of the un-
known system is described by

ey

where N is the autoregressive (AR) order, M is the moving-
average (MA) order, and L = N + M — 1. h may be time-
varying but is assumed constant here. Moreover, assume that
the AR order N and the MA order M are known.

The desired output is given by

d(t) = r7 (H)h + n(t)
where the input vector r(t) € REX! is given by
r(t) =[d(t—1),d(t—2),...,d({t — N+ 1),

o(t),z(t—1),...,z(t — M+ 1" (3)
and the measurement noise n(t) is a zero-mean Gaussian white
noise with variance o7, independent of the input vector. The

output for sufficient-order equation-error adaptive IIR filter is
given by

(@)

—1 M-1

y(t) = am®d(t —m) + > bu(Hzt—m). (@)

In vector notations, (4) can be written as
y(t) =7 ()w(t)

where
w(t) = [a1(t), as(t),...,an—1(t),bo(t), by (t), ..., bar—1(t)]".
(5)
At time ¢, the augmented data vector is defined as
£(t) = [d(t),x"(1)]". (©6)

For convenience of analysis, we define the following ma-
trices. The autocorrelation matrix of the input vector is given
by

R(t) = E{r(t)r" (1)} @)

The autocorrelation matrix of the augmented data vector is de-
scribed by

R() = B0} = |1 5 | ®

where b = E{r(t)d(t)},¢c = E{d(t)d(t)}. We can further
show that

b = E{r(t)d(t)} = E{r()"()h+n(t)]} = ROk (9)
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c = E{d(t)d(t)} = E{[a"r(t) + n(t)][r”
=h"R(t)h + o2.

(Oh +n(t)]}
(10)

Therefore, the autocorrelation matrix of the augmented data
vector can be written as

i hRh+ 02 h'R
R(t) = [ Rh R
_ [h™Rh h7R]  [o2Iy ©
“| mrn R 0 o
—R" R, (11)

B. New RTLS Algorithm
In order to find the TLS solution for adaptive IIR filtering,
Davila [16] established the following Rayleigh quotient (RQ):
7 wl(H)R(t)w(t)
J(W(t) = ———=——"
W) = T mDwa)

where w(t) € R(EHDX1 s the parameter vector, and D is given
by [42]

(12)

D — |:IN><N ONxM] . (13)

Ormxn Oy

The algorithm given in [16] searches the minimum point of
J(w) along the Kalman gain vector. Although there are some
efficient approaches that may eliminate the instability of the
Kalman gain vector [40], [41], the algorithm proposed in [16]
has the potential instability caused by the Kalman gain vector.

It was shown in [16] that if the parameter vector w* associ-
ated with the minimization of J(w) is obtained, then the unbi-
ased solution wrg for adaptive IIR filtering is given by

B
WTLS

where w7 is the first element of w*. This shows that if the first
element of W(t) is constrained to the negative one, the scaling
operation (14) can be avoided, which, at least, saves L multi-
plies, divides, and square roots (MADs). Thus, we adopt the fol-

(14)
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Notice that the number of the unknown parameters in the cost
function (15) is L, whereas the number of the variable parame-
ters in the cost function (12) is . + 1.

An algorithm for efficiently finding the TLS solution for the
adaptive IIR filtering problem is now described. This algorithm
is a special gradient search method. Moreover, the selection of
the update direction to be the data vector will result in the com-
putationally efficient algorithm with computational complexity
O(L). The parameter vector is updated by

w(t) =w(t— 1)+ B(t)r(t). (16)
We will determine (3(t) by minimizing the Reyleigh quotient

T(1\R T ()T
20) 1+ wT(t)Dw(t)
Remark 2.1: If the above cost function is used, it will save
2L + N + 1 MADs compared with that of [16, Table I]. In fact,
since the parameter vector tracked is reduced to the L dimension
from the L + 1 dimension, more manipulations will be saved.
Moreover, because the minimum point of the cost function (15)
is searched along the data vector, the numerical stability of the
proposed algorithm may be improved.
Notice that R(#) can be computed via an iteration formula

7)

R(t) = [f’((?) ‘;:(%)] —R(E-1)+EOT @) (18)
where

R(t) = pR(t — 1) + r(t)r" (1) (19)

b(t) = pb(t — 1) + r(t)d(t) (20)

c(t) = pe(t — 1) + d(t)d(t). 1)

The y in (19)—(21) is a forgetting factor, and 0 < g < 1. Substi-
tuting (16) into (17), taking the derivative of the resulting equa-
tion with respect to 5(t), and forcing it to be equal to zero yields

dJ(w(t))
o) ° (220)
or equivalently

0 r"OREO[-1 w @) [1+w" () Dw(1)]

lowing constraint RQ: —[-1 wIOIR(H[-1 wh ()] " ()Dw(t)] = 0. (22b)
min J(w(t)) = -1 w (t)]l_{gt)[ wl()” In order to solve (17) recursively, let
w(t) [-1 wT(t)lD[ wT(t)]" k(t) = R(t)r(t) (23)
- EL W OROEL IO g5 ) =11 w!(= DIREEL wie=1))" o4
i EDw(E) M) = [=1 wTOIRM[=1 w7 (O] /[L+w" ()Dw ()
where (25)
D - In—yxv—1) Ov—1)xm Notice that \°(#) and A(t) can be efficiently computed by (26)
o Onrx(v—1) Orrxar and (27), shown at the bottom of the page. Hence, the gain
XN(t)=[-1 wi(t = ){uR(t 1) +FOF(t)} -1 w'(t-1)]"
= pA(t = {1+ w" (¢t = 1)Dw(t — 1)} + [w" (t — 1)r(t) — d(t)]” (26)
AE) = {1 wit-1]+ 8@ " OBREO{-1 wi(t-1)]+BH)0 ()]}
[1+wT(t)Dw(t)]
= {\°() + 20)[k" (t)w(t —1) - I"T(t) O]+ B2 ()T (tk(t)}/[1 + w" () Dw(t)] 27
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vector k() can be efficiently computed, with its fast algorithm
given in Appendix B. The fast algorithm only requires O(L)
multiplications.

Remark 2.2: Thefastalgorithm fork(¢) is similarto that of the
well-known Kalman gain vector [38]. However, the well-known
Kalman gain vector is based on the matrix-inversion lemma and
can be numerically unstable. Although some methods were pro-
vided in [39]-[41] to overcome this instability, the Kalman gain
vector may still potentially be unstable. In contrast, the fast al-
gorithm for computing k() is independent of the matrix-inver-
sion lemma, thus being numerically stable.

It is shown by burdensome operations (see Appendix A) that
(22), in fact, is a quadratic polynomial of 5(¢) and can be written
as

af?(t) +bB(t) +c=0 (28)
where
a =k (t)r(t)w' (t — 1)Dr(t
— kKT @t)w(t — 1) — e (t)b(t)]rT (t)Dr(t) (29)

b=k e[l +w! (t—1)Dw(t—1)]=A°(t)r” (t)Dr(t)
(30)
c=[1+wT(t — )Dw(t—1)]kT()w(t—1)—rT (t)b(t)]

A" () Dw(t —1). (31)
A root of (28) is given by
B(t) = (—=b+ (b* — 4ac)'/?)/2a. (32)

This root makes

-1

w(t)
converge to the eigenvector associated with the smallest eigen-
value of R(t). Another root 3(t) = (—=b — (b> — 4ac)'/?)/2a

will make
o)

converge to the eigenvector associated with the largest eigen-
value of R(t). Thus, (32) represents the expected root. The new
RTLS algorithm is shown in Table 1.

Remark 2.3: It is worth noticing that the MADs of the
N-RTLS algorithms are 17L + 2N + 27, whereas the MADs of
Davila’s algorithm [16], [37] are 19L + 3N + 74, which shows
that the computational complexity of the N-RTLS algorithm is
significantly lower than that of Davila’s.

III. ALGORITHM CONVERGENCE

Several issues regarding the existence and uniqueness of the
TLS solution applied to identifying pole-zero systems were dis-
cussed in [16]. In this paper, we only consider the case where
the TLS solution exists and is unique. This is the case when the
polynomials associated with the unknown pole-zero system

M-1

N-1
B(z) = Z by 2", A(z)=1- Z ay,z™ (33)
m=0 m=1

have no common factor [43].
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TABLE 1
FAST ALGORITHM

Initialize: w(0) =[0,0,---,0], A(0)=0, n=0.99~1.0

For t =12,

1. update the data vector r(f)

2. update the gain vector k(#) using the approach in Appendix B 10L+8

3. 200 = -1+ wT ¢ —1)Dw(t -1} +[w! ¢ = Dr() - d (1)) L+N+2
4. b(r) = ub(t —1) +r(1)d(t) 2L

5. a=k"(Orw’ ¢ -=)Dr@)—[k" Ow(—-1)—r" (Ob@)]r" ()Dr(t) 3L+N

6. b=k (O)r@)[1+w" (¢t =1)Dw(—-1)]-1"@)r" (1)Dr(r) 2

7. c=[+w (¢ -)Dw(—DIk" @)w(z—1)—r" (Ob()]-1°()r” (1)Dw(t 1) 2

8. Bt)=(~b+(b* —4ac)'*)/2a 6

9. 1+w ()Dw(t) =1+ w (t—=1)Dw(r—1)+28@t)r” (1)Dw(t —1)+ B (t)r” (1)Dr(t) 4
10. A(t) = {A°(0) + 2B (HW(t =) =7 (Ob()] + B2 (OFT (Ok(1)}/[1+w (ODw(@)] 3
11. w(t)=w(—1)+ B()r() L

Total real MAD’s 17L+ 2N +27

MAD’s stands for the number of multiplies, divides, and square roots

Perform the following generalized eigenvalue decomposition
(GEVD) of the matrix pairs R and D:
RV = DVdiag(hs, X, ..
Rv; = \;Dv; (34)
where V is the generalized eigen matrix, and V; and A ; are the
Jth generalized eigen vector and eigenvalue, respectively. Note
that the eigenvalues have been arranged in the descending order
A1 > Ay > -+ > Ap > Apyg. Differentiating J(w) with
respect to w yields
[Rh R][-1 wT]T
1+ wi'Dw
1 TIR[— T
L wIRL WP
(1+wTDw)?
The stationary points are obtained by solving the following
equation:

_ Rh R][-1 w7|*

S ALy1) or

VJ(w) =

(35)

VI(w) = 1+ wiDw
[-1 wlR[-1 w!]"
_ Dw =
(1 wiDw)2 w=0 (36)
ie.,
[Rh h][-1 wT]T — J(w)Dw = 0. (37)
By making the substitution (34) into (37), we can get
V (Av — J(v)Dv) = 0 (38a)
subject tovv = —1 (38b)

whe_re \A/' consi_sts of the last L rows of V, and v is the first row
of V. Hence, J(w) can be denoted by the following equation:

. vTAv
J(v) = . 39
) vIDv (39)
Clearly, the solution of (38) can be written as
Vj:—\_/j/ﬂlyj n;#0 j=1,2,...,L+1 (40)
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where vy, ; is the jth element of the first row of V. Therefore,
we can get the following stationary points of .J(w):

wi=—v;/l; 0,;#0 j=1,2,...,L+1. (4]
Lemma 3.1: If R is of full rank, then Ap, > Ap 1.
Proof: From (34), we have
- VIRv;
Aj = V}“va = J(Vj)'
Considering (11), the above equation can be written as
_ vIR*v
j = *JT7*] +002
v Dv;
Since R is of full rank and R*[-1, hT]" = 0, R*

is of rank-deficient one. Thus, if v; is not parallel to
[-1,hT]T, then (VIR*v;)/(viDv;) > 0, which shows
A = (VIR*v1)/(3¥EDv) + 02 > Apy1 = of. This
completes the Proof of Lemma 3.1. O
Theorem 3.1: If \p > Ar41 and U1,041 # 0, then wpy; =

— V41 /1,141 is the global minimum point of .J(w). All the
other stationary points are the saddle (unstable) points of .J(w).

Proof: We can directly deduce that

J(Wj):)\j j:1,27...

JL+1. (42)

Therefore, the point wry; = — ;L+1 /1717,;_,_1 is the unique
global minimum point of .J(w). We can define a new vector
asu = V; + eVy41, where € is a small positive number. Let

w = —[u]2 £+1/u1. Then, we have
j(W) _ u'Ru _ (\_fj + E\_/L+1)TR(\_’j + E\_IL+1)
u’Du (\7]' + €\7L+1)TD(\7]' + 5‘7L+1)

_ (‘7]' + €Vp+1)T(5\jDVj + 5;\L+1D‘7L+1)

7T . 7T —
v Dv; + VL+1DVL+1

nj\j + m625\L+1

n + me2

/—\ m52 <

(Aj — Azg1)

e < J(w;y)
where 0 < n = v;Dv; < 1,0 < m = vy 1DV < L
This shows that the stationary point w; is the saddle or unstable
point. The Proof of Theorem 3.1 is completed. O

Remark 3.1: The above theorem guarantees that we can
search the global minimum point of J(w) by the gradient
descent method.

Lemma 3.2: For an arbitrary ¢t > 1, there always exists

V.J(w(t))Tr(t) = 0. (43)
Proof: Since
OI(w(t) _ o7 rOwW(t) o7 T
Clearly, (44) is equivalent to (22). This completes the Proof of
Lemma 3.2. O

~ Theorem 3.2: Assuming that ¢ is large enough so that
R(t) - R = E{r(t)r?(t)}, then w(t) — has t — oc.

961

Proof: Since the (constraint) RQ function J(w) is
bounded, .J(w) can be defined as the energy function associ-
ated with the discrete-time sequence w(¢) [44]. On the other
hand, since w(t) is a gradient-descent sequence associated with
J(w), there always exists that J(w(t)) < J(w(t — 1)) for all
t > 0, which shows that the discrete-time sequence w(t) will
converge to a point in the following invariance set:

F = {w(t)]| J(w(t)) — J(w(t — 1)) = 0,Vt}.

Next, we will show that the above invariance set corresponds
to the following stationary point set of J(w):

(45)

F = {Wj|W]' = — /\-7\]' /@1,]';771,_)' #0] = 1,2,L+1}
(46)

From Lemma 3.2, we can directly deduce that
' (t){[hR R][-1 w ()" — J(w(t))Dw(t)} =0 (47)

and we can write J(w(t)) — J(w

J(w(t))[1+w" (t=1)Dw(t—1)]=[-1 w'(t) — B(t)r" (¢)]

(t—1))=0as

xR[-1 wi(t)—p)r" ()" =0. (48)
Substituting w(t) = w(t — 1) 4+ 8(t)r(t) into (48), we can get
=26t (){J(w(1))Dw(t) — [Rh R][-1 w'(t)]"}
+ J(w(t)[1 +wT () Dw(t) + 5% (t)r" (t)Dr(t)]
=1 wI@RIL W] — BT () Re(t) =
(49)
Since J(w(t))[l + wl(t)Dw(t)] — [wT(t), —1|R[wT(t),
—1]7 = 0, (49) can be written by using (47) as
B (0T (ODr()I(w(t)) — T (Rx()] =0.  (50)
Note that there always exists [r7 (#)Dr(t)J(w ( ) — rT(t)

Rr(t)] # 0. Therefore, we can deduce 3(t) =
requires that

0. This usually

VJ(w(t)) =0 (51)
which implies that the invariance set F' = {w(t)|.J(w(t))
— J(w(t — 1)) = 0,Vt} is the stationary point set of .J(w),
i.e., we have (46).

Since the saddle point set is unstable and h is the unique
stable point (see Theorem 3.1), we conclude that w(t) — h
as t — o0. This completes the Proof of Theorem 3.2. O

IV. SIMULATIONS

Some simulation results are now presented to support the the-
oretical analysis of the new fast recursive total least squares IIR
algorithm. Here, the proposed algorithm and Davila’s algorithm
[16] are simply called N-RTLS and O-RTLS, respectively.

Example 1—System Identification: In this example, the RLS,
O-RTLS, and the N-RTLS are applied to the system identifica-
tion experiment. The unknown system impulse response is de-
fined by

=[05 —05 09 —03 —09 08 —0.7 0.6]"

(52)



962

60 T T

— N-RTLS
50l ----RLS
— - O-RILS

20F

e A A e ———

E stimation ErrordB)

(=}

1000

1500
iterations

Fig. 2. N-RTLS, O-RTLS, and RLS are used for identifying a linear time-

invariant system.
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Fig. 3. N-RTLS, O-RTLS, and RLS are used for identifying a linear time-

varying system.

where N = 4, M = 5,and L = N + M — 1 = 8. For the
convenience of comparison and computation, the system is only
stimulated by the white noise with a unit variance, as shown in
Fig. 1. Only the system output is contaminated by additive, zero-
mean, and white Gaussian noise that is statistically independent
of the input signal. The forgetting factor y in the evaluation was
chosen to be 0.998. The estimate error is defined by

E(t) = [[w(t) - hll2. (53)

When the system is linear time-invariant, the estimation results
are shown in Fig. 2 for the RLS, N-RTLS, and O-RTLS al-
gorithms. Notice that although the performance of N-RTLS is
similar to that of O-RTLS, the computational complexity of
N-RTLS is significantly lower than that of O-RTLS. Here, all
the results are averaged over 50 independent tests.

In order to test the tracking behavior of the relative algorithms
in a nonstationary environment, the parameter estimation exper-
iment is repeated, but the unknown system parameters undergo
a step change at ¢ = 1000. The obtained results are shown in
Fig. 3.
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Fig. 5. Averaged periodograms of ALE outputs for N-RTLS and RLS for two
sinusoids, ALE lengths of 4.

Example 2—Adaptive Line Enhancement: The N-RTLS al-
gorithm is then applied to an adaptive line enhancement (ALE)
experiment. The adaptive line enhancers based on IIR were first
discussed by Rao and Kung [45]. In Experiment 1, the periodic
signal consists of a single sinusoid s(¢) = cos(0.3mt+ ¢)+n(?)
in additive Gaussian white noise with variance of 0.25. The
phase angle ¢ is a pseudo-random variable uniformly distributed
on [0, 27] and is held constant for each experiment. To deter-
mine the relative performance of the ALE, periodograms are
computed from successive output of the ALE corresponding to
t = 1 to 1024. These periodograms are consequently averaged
over 50 independent tests. The average periodograms S(w) are
shown in Fig. 4 for ALE lengths of M = 2.

In Experiment 2, the observed signal includes two sinusoids
in additive white noise with variance of 0.25. It can be repre-
sented as s(t) = cos(0.47t + ¢1) + cos(0.67t + ¢=2) + n(t),
where ¢1 and ¢ are randomly produced on a uniform distri-
bution of [—, 7]. The obtained results are shown in Fig. 5 for
ALE lengths of M = 4.
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V. CONCLUSION

In this paper, an algorithm for efficiently computing the
eigenvector associated with the smallest eigenvalue of the
sample covariance matrix has been described and applied to
recursively solving the total least squares (TLS) solution to the
adaptive IIR filtering problem. When only the output vector
contains additive noise, it has been shown that the filter coef-
ficients produced by the N-RTLS algorithm are unbiased. The
experiment results have been provided to confirm the efficiency
of the proposed algorithm. The computational complexity of
the N-RTLS algorithm is significantly lower than the existing
algorithms.

APPENDIX A
DERIVATION OF (28)

It is straightforward to show the following equations:

0 TOIRE[-1 w(B)]"
T (O)b(t) k@)][-1 wh(B)]"
KT (t)yw(t — 1) + B(t)k" (H)r(t) — v (1)b(t)
1+ wT(t)Dw(t)
=1+wl(t—1)Dw(t — 1)+ 268(t)rT
+ B(t)r” (t)Dr(t)
-1 wi@OIR(H)[-1 w(#)]"
={[-1 w'(t—=1D]+[0 a®)r"(O]}R()
x{[-1 wht—-1D"+[0 B (1))}
=) +28M)0 TOR@[-1 wh(E-1)]"
+ 3200 (¢ )] R()[0 r"(8)]"
= 2(t) + 281 K" (H)w(t — 1) — 7 (£)b(t)]
+ B2 (K" (t)r(t)
rT(t)Dw(t)
= rT(t)Dw(t -1+ ,B(t)rT

Thus, we have

0 TOIREH[-1 wh (B [1+w"
= /33( )K" (#)e(t)]e” (1) Dr(t
A2k (O)r(®)[r" () Dw(t - 1)]
[kT( )w(t —1) — T (t)b(t)]r" (1)Dr(t)}
+ BT ()1 + w (t — 1)Dw(t — 1)]
+ 2k (Hw(t — 1) — " (t)b(t)]e” (HDw(t — 1)}
+ 1 +wi(t—1)Dw(t - D]k ()w(t — 1)
- rT(t)b(t)]
-1 wi(OIR(H)[-1 w ()] e (1)Dw(t)

(54)

() Dw(t — 1)
(55)

(56)

(t)Dr(t). (57)

(t)Dw(1)]

(58)

:53( )T (t)r(t)]e” (1) Dr(t)
B2 {2[k" (tyw(t — 1) — e (H)b(1)]e” (1) Dr(t)
K" (t)r(t)r” (t)Dw(t — 1)}
(){2[kT(t)W(t— 1) — " (t)b(t)]e” () Dw(t — 1)
+ )\0( el ()Dr(t)} + A () () Dw(t — 1). (59)

Finally, subtracting (59) from (58) yields (28).
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APPENDIX B
FGA FOR COMPUTING GAIN VECTOR

The fast algorithm for computing the gain vector is deduced
by the approach similar to [38]. For convenience of analysis, we
will repeatedly define the related variables. Let p = L + 2, and
introduce the p-dimensional vector

Ip(t) =[d(t—1),...,d(t = N +1),d(t = N),z(t)
cox(t =M+ 1)zt — M), (60)
Define the permutation matrix S, and Qp,,
Spptyp () = [ (1) T(t=1)]" (©1)
Qoo (1) = [t7() pF(1)]" (62)
where
Ex(t) = [d(t —1) =(t)]” (63)
po(t) = [d(t = N) a(t—M))". (64)

ObVi.Oqu/, S; 1 SI. Q. = QL. Note that vector and
matrix dimensions are indicated by the subscripts.

The autocorrelation matrix of T, (¢) is estimated by

A r | &()E La(t)r"(t—1
Runtt) =5, | STl R[S @

or equivalently

> —q? (t) r(t)p3 ()
Rep(t) = [p2<t> () p2<t>5§<t>] Q- (60
From (65), we can obtain
E(t) = Rpp(tﬁp(t)
_qr [m2(t)é(t) + BLy(H)r(t - 1)
=5 [ Buo(l— 1)és(t) + K(t —1) } ©7)
where
Bps(t) = Bra(t — 1) + r(t — 1)é; (1) (68)
7l'22(t) = 7l'22(t - 1) + §Q(f)fg(t) (69)
From (66), we deduce
k(1) = Rpp(0)E, (1) = Q] [k(“ * Bf(t)”z“)] 10)
where
Bio(t) = Brao(t — 1) +x(t)p3 (1). (71)
Furthermore, comparing (67) with (70) yields
ST w2 (t)&a(t) + B,y (t)r(t — 1)
Bra(t — 1)&(t) + k(t —1)
Define a vector as
Loy w22 (1)€2(t) + BT, (t)r(t — 1)
k0 = Qust, | ]
_ [k(t) + BL?(t)m(t)} _ (73)
Then, (73) gives rise to
k(t) = [k(t)]l1, — Bra(t)ps(t) (74)
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TABLE 1I
FGA FOR COMPUTING THE GAIN VECTOR

Algorithm

MAD’s (see Tablel)

Initialize B, (0) = 0,8, (0) = 0,7,,(0) = 0.

B,,(0=B,(-D)+r{—-DE; () 2L
§L2 (t)=ﬁL2 (1_1)*'1'(’)!)2(’) 2L
"2:(’):7"22(’_])"'"52(7)"52.(7) 4
k(1) = s;{"” (08, +B,,(Or(t - l)} AL+4
B, t—-DE,()+k@-1)
m(t) _

= k(t
Ll(t)} Q,k®
k(t)=m()-B,, 1)p, () 2L

Total real MAD’s: 10L+8

where [R(f)]l 1 denotes the vector constructed by the first L
elements of k(). The FGA for computing the gain vector k()
is given in Table II.
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